Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126
1.
Nat Plants ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38714768

Phytochrome A (phyA) is the plant far-red (FR) light photoreceptor and plays an essential role in regulating photomorphogenic development in FR-rich conditions, such as canopy shade. It has long been observed that phyA is a phosphoprotein in vivo; however, the protein kinases that could phosphorylate phyA remain largely unknown. Here we show that a small protein kinase family, consisting of four members named PHOTOREGULATORY PROTEIN KINASES (PPKs) (also known as MUT9-LIKE KINASES), directly phosphorylate phyA in vitro and in vivo. In addition, TANDEM ZINC-FINGER/PLUS3 (TZP), a recently characterized phyA-interacting protein required for in vivo phosphorylation of phyA, is also directly phosphorylated by PPKs. We reveal that TZP contains two intrinsically disordered regions in its amino-terminal domain that undergo liquid-liquid phase separation (LLPS) upon light exposure. The LLPS of TZP promotes colocalization and interaction between PPKs and phyA, thus facilitating PPK-mediated phosphorylation of phyA in FR light. Our study identifies PPKs as a class of protein kinases mediating the phosphorylation of phyA and demonstrates that the LLPS of TZP contributes significantly to more production of the phosphorylated phyA form in FR light.

2.
Langmuir ; 40(19): 10305-10312, 2024 May 14.
Article En | MEDLINE | ID: mdl-38696716

The limited elasticity and inadequate bonding of hydrogels made from guar gum (GG) significantly hinder their widespread implementation in personalized wearable flexible electronics. In this study, we devise GG-based self-adhesive hydrogels by creating an interpenetrating network of GG cross-linked with acrylic, 4-vinylphenylboronic acid, and Ca2+. With the leverage of the dynamic interactions (hydrogen bonds, borate ester bonds, and coordination bonds) between -OH in GG and monomers, the hydrogel exhibits a high stretchability of 700%, superior mechanical stress of 110 kPa, and robust adherence to several substrates. The adhesion strength of 54 kPa on porcine skin is obtained. Furthermore, the self-adhesive hydrogel possesses stable conductivity, an elevated gauge factor (GF), and commendable durability. It can be affixed to the human body as a strain sensor to obtain precise monitoring of human movement behavior. Our research offers possibilities for the development of GG-based hydrogels and applications in wearable electronics and medical monitoring.


Electric Conductivity , Galactans , Hydrogels , Mannans , Plant Gums , Hydrogels/chemistry , Mannans/chemistry , Plant Gums/chemistry , Galactans/chemistry , Animals , Wearable Electronic Devices , Humans , Swine , Adhesives/chemistry
3.
J Multidiscip Healthc ; 17: 1653-1662, 2024.
Article En | MEDLINE | ID: mdl-38646019

Background: Psoriasis is a chronic autoimmune inflammatory skin condition characterized by erythema, papules, and scales. It imposes a heavy psychological and social strain on both patients and their families. Surprisingly, there's limited research delving into the disease burden and coping strategies of spouses contending with psoriasis. Objective: The objective is to explore the disease burden faced and coping strategies utilized by spouses of individuals living with psoriasis. This exploration aims to offer insights crucial for devising mental health support and intervention strategies. Methods: The research methodology employed in this study was phenomenological, a qualitative approach. A total of fifteen spouses of patients with psoriasis were selected using an objective sampling method for in-depth, semi-structured interviews. Thematic analysis was then applied to the recorded interview data to derive meaningful themes. Results: This study has identified and analyzed three core themes concerning the disease burden and coping strategies of spouses of patients with psoriasis: Overwhelming disease burden; Lack of support system; Coping strategies (Problem - centered coping strategies: Proactive acquisition of disease knowledge; Active confrontation of illness - related issues; Behavioral habit alteration; and Emotional - centered coping strategies: Active acceptance and normalization; Passive acceptance and internalized stigma; Avoidance of disease - related problems). Conclusion: This study adds valuable insights into comprehending the disease burden encountered by spouses of patients with psoriasis and sheds light on the coping strategies they employ. Healthcare providers should proactively recognize and address the burden experienced by spouses early on. Establishing a robust support network is crucial, and promoting adaptive coping strategies can significantly aid spouses in effectively navigating and managing the complexities associated with psoriasis.

4.
Brain Behav ; 14(5): e3412, 2024 May.
Article En | MEDLINE | ID: mdl-38664915

PURPOSE: Obsessive-compulsive disorder (OCD) is a complex psychiatric disorder. Genetic and broad environmental factors are common risk factors for OCD. The purpose of this study is to explore the molecular mechanism of OCD and to find new molecular targets for the diagnosis and management of OCD. METHODS: All data were downloaded from public dataset. Key modules and candidate key mRNAs were identified based on weighted gene co-expression network analysis (WGCNA). The "limma" R package was used for differential expression analysis of mRNAs. Subsequently, functional enrichment analysis of differentially expressed mRNAs (DEmRNAs) was also carried out. In addition, a diagnostic model was constructed. Finally, the infiltration level of immune cells in OCD and its correlation with multicentric key DEmRNAs were analyzed. RESULTS: Green and red modules were selected as the hub modules. A total of 447 mRNAs were considered candidate key mRNAs according to GS > 0.2 and MM > 0.3. A total of 26 DEmRNAs in the same direction were identified in the GSE60190 and GSE78104 datasets. A total of 26 DEmRNAs were intersected with candidate key mRNAs in WGCNA to obtain 10 intersection DEmRNAs (HSPB1, ITPK1, CBX7, PPP1R10, TAOK1, PISD, MKNK2, RWDD1, PPA1, and RELN). However, only four DEmRNAs (HSPB1, TAOK1, MKNK2, and PPA1) predicted related drugs. Subsequently, receiver operating characteristic analysis shows that the diagnostic model has high diagnostic value. Moreover, six multicentric key DEmRNAs (SNRPF, SNRNP70, PRPF8, NOP56, EPRS, and CCT2) were screened by UpSet package. Finally, six multicentric key DEmRNAs were found to be associated with immune cells. CONCLUSION: The key molecules obtained in this study lay a foundation for further research on the molecular mechanism of OCD.


Gene Regulatory Networks , Obsessive-Compulsive Disorder , RNA, Messenger , Signal Transduction , Humans , Obsessive-Compulsive Disorder/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Gene Expression Profiling
5.
Biomedicines ; 12(4)2024 Apr 06.
Article En | MEDLINE | ID: mdl-38672165

Stroke and dementia have been linked to the appearance of white matter hyperintensities (WMHs). Meanwhile, diffusion tensor imaging (DTI) might capture the microstructural change in white matter early. Specific dietary interventions may help to reduce the risk of WMHs. However, research on the relationship between specific nutrients and white matter changes is still lacking. We aimed to investigate the causal effects of essential nutrients (amino acids, fatty acids, mineral elements, and vitamins) on WMHs and DTI measures, including fraction anisotropy (FA) and mean diffusivity (MD), by a Mendelian randomization analysis. We selected single nucleotide polymorphisms (SNPs) associated with each nutrient as instrumental variables to assess the causal effects of nutrient-related exposures on WMHs, FA, and MD. The outcome was from a recently published large-scale European Genome Wide Association Studies pooled dataset, including WMHs (N = 18,381), FA (N = 17,663), and MD (N = 17,467) data. We used the inverse variance weighting (IVW) method as the primary method, and sensitivity analyses were conducted using the simple median, weighted median, and MR-Egger methods. Genetically predicted serum calcium level was positively associated with WMHs risk, with an 8.1% increase in WMHs risk per standard deviation unit increase in calcium concentration (OR = 1.081, 95% CI = 1.006-1.161, p = 0.035). The plasma linoleic acid level was negatively associated with FA (OR = 0.776, 95% CI = 0.616-0.978, p = 0.032). Our study demonstrated that genetically predicted calcium was a potential risk factor for WMHs, and linoleic acid may be negatively associated with FA, providing evidence for interventions from the perspective of gene-environment interactions.

6.
Int J Biol Macromol ; 269(Pt 1): 131812, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38670197

An important micronutrient involved in immune response and antitumor is selenium. LMW-GFP, a polysaccharide extracted from Grifola frondosa seed bodies, has a relatively weak antitumor effect on BGC-823 and MFC cells in vitro, whereas selenium binding to LMW-GFP can significantly increase the in vitro antitumor activity of LMW-GFP. In this study, Se-LMW-GFP was prepared by the HNO3-Na2SeO3 method, and the structures of LMW-GFP and Se-LMW-GFP were characterized by UV-visible spectroscopy of absorption, FTIR spectroscopy, and electron scanning microscopy, and these structural analyses showed that selenium was successfully complexed to LMW-GFP. The selenium content of Se-LMW-GFP was measured to be 2.08 % ± 0.08 % by ICP-MS. The anti-tumor activity of LMW-GFP before and after selenium modification was compared by cellular experiments, and the findings indicated that the anti-tumor activity of Se-LMW-GFP was considerably improved over that of LMW-GFP, and inhibited the proliferation of BGC-823 cells and MFC cells through a combination of the Fas/FasL-mediated exogenous death receptor pathway as well as the endogenous mitochondrial pathway. Our results suggest that Se-LMW-GFP not only has great potential for natural health food and anti-gastric cancer drug development but is also a good selenium supplement.

7.
J Chromatogr A ; 1720: 464808, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38471298

Juices and beverages are produced by industry for long-distance distribution and shelf-stability, providing valuable nutrients. However, their nutritional value is often underestimated due to insufficient analytical methods. We have employed non-targeted analysis through a standardized analytical protocol, taking advantage of Data Independent Acquisition (DIA) technique and a novel Chromatographic Retention Behavior (CRB) data deconvolution algorithm. After analyzing 9 fruits and their products, correlations between fruits and their juices are accurately digitalized by similarities of their LC-MS fingerprints. We also specify non-targeted molecules primarily associate with nutrient loss in these analyzed juice products, including nitrogenous nutrients, flavonoids, glycosides, and vitamins. Moreover, we unveiled previously unreported fruit-characteristic metabolites, of which reconstituted-from-concentrate (RFC) juices contain over 40% of the content found in their fresh counterparts. Conclusively, our method establishes a quantitative benchmark for rational selection of RFC juices to substitute natural fruits.


Beverages , Fruit , Fruit/chemistry , Beverages/analysis , Flavonoids/analysis , Fruit and Vegetable Juices/analysis
8.
Cell Biol Int ; 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38433534

Bone defects are characterized by a hypoxic environment, which affects bone tissue repair. However, the role of hypoxia in the repair of alveolar bone defects remains unclear. Human periodontal ligament stem cells (hPDLSCs) are high-quality seed cells for repairing alveolar bone defects, whose behavior changes under hypoxia. However, their mechanism of action is not known and needs to be elucidated. We hypothesized that hypoxia might be beneficial to alveolar bone defect repair and the osteogenic differentiation of hPDLSCs. To test this hypothesis, cobalt chloride (CoCl2 ) was used to create a hypoxic environment, both in vitro and in vivo. In vitro study, the best osteogenic effect was observed after 48 h of hypoxia in hPDLSCs, and the AKT/mammalian target of rapamycin/eukaryotic translation initiation factor 4e-binding protein 1 (AKT/mTOR/4EBP-1) signaling pathway was significantly upregulated. Inhibition of the AKT/mTOR/4EBP-1 signaling pathway decreased the osteogenic ability of hPDLSCs under hypoxia and hypoxia-inducible factor 1 alpha (HIF-1α) expression. The inhibition of HIF-1α also decreased the osteogenic capacity of hPDLSCs under hypoxia without significantly affecting the level of phosphorylation of AKT/mTOR/4EBP-1. In vitro study, Micro-CT and tissue staining results show better bone regeneration in hypoxic group than control group. These results suggested that hypoxia promoted alveolar bone defect repair and osteogenic differentiation of hPDLSCs, probably through AKT/mTOR/4EBP-1/HIF-1α signaling. These findings provided important insights into the regulatory mechanism of hypoxia in hPDLSCs and elucidated the effect of hypoxia on the healing of alveolar bone defects. This study highlighted the importance of physiological oxygen conditions for tissue engineering.

9.
Water Res ; 254: 121420, 2024 May 01.
Article En | MEDLINE | ID: mdl-38492478

Global warming is leading to extended stratification in deep lakes, which may exacerbate phosphorus (P) limitation in the upper waters. Conversion of labile dissolved organic P (DOP) is a possible adaptive strategy to maintain primary production. To test this, the spatiotemporal distributions of various soluble P fractions and phosphomonesterase (PME)/phosphodiesterase (PDE) activities were investigated in Lake Fuxian during the stratification period and the transition capacity of organic P and its impact on primary productivity were evaluated. The results indicated that the DOP concentration (mean 0.20 ± 0.05 µmol L-1) was significantly higher than that of dissolved inorganic P (DIP) (mean 0.08 ± 0.03 µmol L-1) in the epilimnion and metalimnion, which were predominantly composed of orthophosphate monoester (monoester-P) and orthophosphate diesters (diester-P). The low ratio of diester-P / monoester-P and high activities of PME and PDE indicate DOP mineralization in the epilimnion and metalimnion. We detected a DIP threshold of approximately 0.19 µmol L-1, corresponding to the highest total PME activity in the lake. Meta-analysis further demonstrated that DIP thresholds of PME activities were prevalent in oligotrophic (0.19 µmol L-1) and mesotrophic (0.74 µmol L-1) inland waters. In contrast to the phosphate-sensitive phosphatase PME, dissolved PDE was expressed independent of phosphate availability and its activity invariably correlated with chlorophyll a, suggesting the involvement of phytoplankton in DOP utilization. This study provides important field evidence for the DOP transformation processes and the strategy for maintaining primary productivity in P-deficient scenarios, which contributes to the understanding of P cycles and the mechanisms of system adaptation to future long-term P limitations in stratified waters.


Lakes , Phosphorus , Chlorophyll A , Phosphates , Phytoplankton
10.
Int Immunopharmacol ; 129: 111598, 2024 Mar 10.
Article En | MEDLINE | ID: mdl-38309092

BACKGROUND AND PURPOSE: Wuling capsule (WL) has good efficacy in the clinical treatment of chronic hepatitis B and liver injury. Liver fibrosis is a common pathological feature of chronic liver disease and may progress to irreversible cirrhosis and liver cancer. Accumulating evidence reveals that modulating macrophage polarization contribute to the therapy of liver fibrosis. However, the effects of WL on modulating macrophage polarization to relive liver fibrosis remain unclear. This study investigated the anti-liver fibrosis effects of WL in carbon tetrachloride (CCl4)-induced liver fibrosis in rats, and the modulation effects and underlying molecular mechanism on macrophage polarization. METHODS: A rat liver fibrosis model was constructed by intraperitoneal injection of 40 % CCl4 olive oil mixture. At 2, 4, 6, and 8 weeks, the histopathological status of the liver was assessed by hematoxylin-eosin (HE) and Masson staining; the liver biochemical indexes were measured in rat liver tissue. The expression levels of inflammatory cytokines in liver tissue were detected by ELISA. The mRNA levels and proteins expression of macrophage markers of different phenotypes, TLR4-NF-κB signaling pathway indicators were detected independently by ELISA, immunofluorescence, RT-PCR and western blotting. RESULTS: In vivo, WL treatment attenuated abnormal changes in weight, organ indices and biochemical indices, alleviated pathological changes, and reduced collagen fiber deposition as well as the expression of α-SMA in liver tissues. Further studies revealed that WL decreased the expression of the macrophage M1 polarization markers inducible nitric oxide synthase (iNOS), TNF-α, IL-6, and CD86, promoted the expression of the M2 macrophage polarization markers IL-10, CD206, and arginase-1 (Arg-1), and inhibited the activation of the TLR4-NF-κB signaling pathway via several key signaling proteins. In vitro, WL significantly suppressed macrophage M1 polarization, and promoted M2 polarization while boosted M1 polarization transform to M2 polarization in LPS-activated RAW264.7 cells. CONCLUSIONS: This study demonstrated that WL modulated macrophage polarization against liver fibrosis mainly by inhibiting the activation of the TLR4-NF-κB signaling pathway.


Drugs, Chinese Herbal , NF-kappa B , Toll-Like Receptor 4 , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Macrophages/metabolism
11.
J Cell Biol ; 223(2)2024 02 05.
Article En | MEDLINE | ID: mdl-38252412

TDP-43 aggregation is a hallmark of neurodegeneration. In this issue, Iguchi et al. (https://doi.org/10.1083/jcb.202302048) report that IκB kinase (IKK), an important mediator of inflammation, phosphorylates cytoplasmic TDP-43 to promote proteasomal degradation, revealing an unexpected link between inflammation and TDP-43 homeostasis.


DNA-Binding Proteins , I-kappa B Kinase , Proteasome Endopeptidase Complex , Humans , Cytoplasm , DNA-Binding Proteins/chemistry , I-kappa B Kinase/metabolism , Inflammation , Phosphorylation , Proteasome Endopeptidase Complex/metabolism
12.
Neuromuscul Disord ; 35: 8-12, 2024 Feb.
Article En | MEDLINE | ID: mdl-38194733

Deep-intronic variants that create or enhance a splice site are increasingly reported as a significant cause of monogenic diseases. However, deep-intronic variants that activate pseudoexons by affecting a branch point are extremely rare in monogenic diseases. Here, we describe a novel deep-intronic DMD variant that created a branch point in a Duchenne muscular dystrophy (DMD) patient. A 7.0-year-old boy was enrolled because he was suspected of DMD based on his clinical, muscle imaging, and pathological features. Routine genetic testing did not discover a pathogenic DMD variant. We then performed muscle-derived dystrophin mRNA analysis and detected an aberrant pseudoexon-containing transcript. Further genomic Sanger sequencing and bioinformatic analyses revealed a novel deep-intronic splicing variant in DMD (NM_004006.2:c.5325+1759G>T), which created a new branch point sequence and thus activated a new dystrophin pseudoexon (NM_004006.2:r.5325_5326ins5325+1779_5325+1855). Our study highlights the significant role of branch point alterations in the pathogenesis of monogenic diseases.


Muscular Dystrophy, Duchenne , Humans , Male , Child , Muscular Dystrophy, Duchenne/genetics , Dystrophin/genetics , Mutation , RNA Splicing , Genetic Testing
13.
Phytomedicine ; 123: 155160, 2024 Jan.
Article En | MEDLINE | ID: mdl-37984122

BACKGROUND: Hypericum perforatum L. (HPL) is a potential traditional Chinese medicine. It could promotes menopausal 'kidney-yin deficiency syndrome' that characterized by renal function decline. However, its potential pharmacological effect and mechanism remains unknown. OBJECTIVE: The aim of this study was to investigate whether HPL can improve menopausal renal function decline and to explore its mechanism of action. METHODS: The mainly ingredients of HPL were identified using UPLC-Q-TOF-MS/MS approach, and the potential therapeutic targets of HPL for renal function decline were chose via network pharmacology technique. The key therapeutic metabolites were selected through non-targeted metabolomic and chemometric methods. Then, the network were constructed and the key targets and metabolites were screened. At last, the validation experiments and mechanism exploring were adopted by using Immunofluorescence, enzyme-linked immunosorbent assay (ELISA), real-time PCR (RT-PCR), and western blotting assays. RESULTS: mainly ingredients of HPL were identified and determined 17 compounds and 29 targets were chose as mainly active compounds and potential therapeutic targets. Based on OVX induced renal decline rat model, after chemometric analysis, 59 endo-metabolites were selected as key therapeutic metabolites, and AGE-RAGE signal pathway in diabetes complications was enriched as the key pathway. By constructing a "disease-component-target" network, Hyperoside, Quercetrin, and quinic were selected as the key therapeutic compounds, and the AKT1 and NOS3 were selected as the key therapeutic targets. The results of ELISA, RT-PCR and western blot experiments indicated that HPL could rescue the abnormal expressions both of AKT1 and NOS3, as well as their related metabolites distortion. CONCLUSION: Our findings indicated that HPL regulated expression of AKT1 and NOS3 through modulating AGE-RAGE signaling pathway in OVX stimulated rats` renal dysfunction, implicating the potential values of HPL in menopause syndromes therapy.


Antineoplastic Agents , Drugs, Chinese Herbal , Hypericum , Female , Humans , Animals , Rats , Tandem Mass Spectrometry , Metabolomics , Kidney , Ovariectomy , Plant Oils , Molecular Docking Simulation , Proto-Oncogene Proteins c-akt , Nitric Oxide Synthase Type III
14.
Plant Cell ; 36(5): 1844-1867, 2024 May 01.
Article En | MEDLINE | ID: mdl-38146915

Hypothetical chloroplast open reading frames (ycfs) are putative genes in the plastid genomes of photosynthetic eukaryotes. Many ycfs are also conserved in the genomes of cyanobacteria, the presumptive ancestors of present-day chloroplasts. The functions of many ycfs are still unknown. Here, we generated knock-out mutants for ycf51 (sll1702) in the cyanobacterium Synechocystis sp. PCC 6803. The mutants showed reduced photoautotrophic growth due to impaired electron transport between photosystem II (PSII) and PSI. This phenotype results from greatly reduced PSI content in the ycf51 mutant. The ycf51 disruption had little effect on the transcription of genes encoding photosynthetic complex components and the stabilization of the PSI complex. In vitro and in vivo analyses demonstrated that Ycf51 cooperates with PSI assembly factor Ycf3 to mediate PSI assembly. Furthermore, Ycf51 interacts with the PSI subunit PsaC. Together with its specific localization in the thylakoid membrane and the stromal exposure of its hydrophilic region, our data suggest that Ycf51 is involved in PSI complex assembly. Ycf51 is conserved in all sequenced cyanobacteria, including the earliest branching cyanobacteria of the Gloeobacter genus, and is also present in the plastid genomes of glaucophytes. However, Ycf51 has been lost from other photosynthetic eukaryotic lineages. Thus, Ycf51 is a PSI assembly factor that has been functionally replaced during the evolution of oxygenic photosynthetic eukaryotes.


Bacterial Proteins , Open Reading Frames , Photosystem I Protein Complex , Synechocystis , Photosystem I Protein Complex/metabolism , Photosystem I Protein Complex/genetics , Synechocystis/genetics , Synechocystis/metabolism , Open Reading Frames/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chloroplasts/metabolism , Photosynthesis/genetics , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Mutation
15.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Article En | MEDLINE | ID: mdl-38148131

Microcystis blooms have a marked effect on microbial taxonomical diversity in eutrophic lakes, but their influence on the composition of microbial functional genes is still unclear. In this study, the free-living microbial functional genes (FMFG) composition was investigated in the period before Microcystis blooms (March) and during Microcystis blooms (July) using a comprehensive functional gene array (GeoChip 5.0). The composition and richness of FMFG in the water column was significantly different between these two periods. The FMFG in March was enriched in the functional categories of nitrogen, sulfur, and phosphorus cycling, whereas the FMFG in July was enriched in carbon cycling, organic remediation, and metal homeostasis. Molecular ecological network analysis further demonstrated fewer functional gene interactions and reduced complexity in July than in March. Module hubs of the March network were mediated by functional genes associated with carbon, nitrogen, sulfur, and phosphorus, whereas those in July by a metal homeostasis functional gene. We also observed stronger deterministic processes in the FMFG assembly in July than in March. Collectively, this study demonstrated that Microcystis blooms induced significant changes in FMFG composition and metabolic potential, and abundance-information, which can support the understanding and management of biogeochemical cycling in eutrophic lake ecosystems.


Microcystis , Microcystis/genetics , Microcystis/metabolism , Lakes/chemistry , Ecosystem , China , Phosphorus/metabolism , Nitrogen/metabolism , Carbon/metabolism , Sulfur/metabolism , Eutrophication
16.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5365-5376, 2023 Oct.
Article Zh | MEDLINE | ID: mdl-38114126

The present study aimed to explore the underlying mechanism of Wuling Capsules in the treatment of hepatic fibrosis(HF) through network pharmacology, molecular docking, and animal experiments. Firstly, the chemical components and targets of Wuling Capsules against HF were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), Traditional Chinese Medicines Integrated Database(TCMID), GeneCards, and literature retrieval. The protein-protein interaction(PPI) network analysis was carried out on the common targets by STRING database and Cytoscape 3.9.1 software, and the core targets were screened, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. Enrichment analysis was conducted on the core targets and the "drug-core component-target-pathway-disease" network was further constructed. Subsequently, molecular docking between core components and core targets was conducted using AutoDock Vina software to predict the underlying mechanism of action against HF. Finally, an HF model induced by CCl_4 was constructed in rats, and the general signs and liver tissue morphology were observed. HE and Masson staining were used to analyze the liver tissue sections. The effects of Wuling Capsules on the levels of inflammatory factors, hydroxyproline(HYP) levels, and core targets were analyzed by ELISA, RT-PCR, etc. A total of 445 chemical components of Wuling Capsules were screened, corresponding to 3 882 potential targets, intersecting with 1 240 targets of HF, and 47 core targets such as TNF, IL6, INS, and PIK3CA were screened. GO and KEGG enrichment analysis showed that the core targets mainly affected the process of cell stimulation response and metabolic regulation, involving cancer, PI3K-Akt, MAPK, and other signaling pathways. Molecular docking showed that the core components of Wuling Capsules, such as lucidenic acid K, ganoderic acid B, lucidenic acid N, saikosaponin Q2, and neocryptotanshinone, had high affinities with the core targets, such as TNF, IL6 and PIK3CA. Animal experiments showed that Wuling Capsules could reduce fat vacuole, inflammatory infiltration, and collagen deposition in rat liver, decrease the levels of inflammatory cytokines TNF-α, IL-6, and HYP, and downregulated the expressions of PI3K and Akt mRNA. This study suggests that the anti-HF effect of Wuling Capsules may be achieved by regulating the PI3K-Akt signaling pathway, reducing the levels of TNF-α and IL-6 inflammatory factors, and inhibiting the excessive deposition of collagen.


Animal Experimentation , Drugs, Chinese Herbal , Animals , Rats , Interleukin-6 , Network Pharmacology , Tumor Necrosis Factor-alpha , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Liver Cirrhosis/drug therapy , Liver Cirrhosis/genetics , Medicine, Chinese Traditional , Capsules , Class I Phosphatidylinositol 3-Kinases , Collagen , Drugs, Chinese Herbal/pharmacology
17.
Molecules ; 28(17)2023 Aug 31.
Article En | MEDLINE | ID: mdl-37687203

In this paper, we report the synthesis of spirocyclopropane-containing 4H-pyrazolo[1,5-a]indoles 6a-e via alkylative dearomatization and intramolecular N-imination of indole-O-(methylsulfonyl)oxime 11. Starting materials tryptophol (7) and 2-bromocyclopetanone (8) were reacted in the presence of HBF4·OEt2, providing 1,2,3,5,6,11-hexahydrocyclopenta[2,3]oxepino[4,5-b]indole (9) in a 63% yield. Compound 9 was reacted with hydroxylamine hydrochloride to afford oxime 10 (65% yield), which was subsequently bis-methanesulfonated to form 11 in a 85% yield. Heating 11 with various alcohols in the presence of N,N-diisopropylethylamine (DIPEA) triggered the alkylative dearomatization and intramolecular N-imination, forming the spirocyclopropane and 4H-pyrazolo[1,5-a]indole structures in the targets 6a-e with 67-84% yields.

18.
Phytomedicine ; 119: 155021, 2023 Oct.
Article En | MEDLINE | ID: mdl-37603974

BACKGROUND: Total saponins from Rhizoma Panacis Majoris (RPMTG) showed significant antitumour activity in our previous studies. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) with tumour-like characteristics have received attention as a therapeutic target for RA. However, the potential effect and mechanism of action of RPMTG against RA-FLS remain unclear. OBJECTIVE: The study investigated the therapeutic effect of RPMTG on adjuvant-induced arthritis (AIA) in rats, and the regulation effect and underlying mechanism on apoptosis, autophagy of RA-FLS. METHODS: The therapeutic effect of RPMTG was determined by the symptoms and signs of AIA rats. The production of inflammatory cytokines was detected by ELISA. Histopathological change of the ankle and synovial tissues were detected by HE staining. Flow cytometry, Hoechst 33342/PI staining, MDC staining, and TEM were used to determine the effects of RPMTG on apoptosis and autophagy. Western blotting was applied to detect the expression levels of proteins. RESULTS: In AIA rats, RPMTG treatment ameliorated paw swelling, and arthritis score, restored synovial histopathological changes, inhibited the expression of IL-6 and IL-1ß, exhibiting its potent anti-arthritis effect. In vitro, RPMTG depressed the proliferation of RA-FLS, arrested cell cycle in G0/G1 phase, and induced mitochondria-mediated apoptosis. Moreover, RPMTG significantly inhibited the autophagy in vivo and in vitro, proved by decreasing the expression of autophagy-related indicators (LC3II/LC3I, Beclin-1). Mechanistically, the study demonstrated that the activation of p38 MAPK and PI3K/Akt/mTOR pathways was mainly involved in the therapeutic effects of RPMTG. Interestingly, the effect of RPMTG on apoptosis was reversed after Rapamycin treatment, which preliminarily demonstrated that the inhibitory effect of RPMTG on autophagy was beneficial to the effect on inducing apoptosis. The regulation effect of RPMTG concurrently on apoptosis and autophagy revealed its unique advantages in RA treatment. CONCLUSION: RPMTG showed potent therapeutic effects on AIA rats and induced apoptosis, inhibited autophagy mainly through activating the p38 MAPK and PI3K/Akt/mTOR pathways in RA-FLS.


Arthritis, Experimental , Arthritis, Rheumatoid , Synoviocytes , Animals , Rats , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Arthritis, Rheumatoid/drug therapy , Arthritis, Experimental/drug therapy
19.
Chin Med ; 18(1): 103, 2023 Aug 19.
Article En | MEDLINE | ID: mdl-37598173

BACKGROUND: Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported. METHODS: Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions. RESULTS: In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. CONCLUSION: In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.

20.
Front Nutr ; 10: 1172587, 2023.
Article En | MEDLINE | ID: mdl-37426181

Background: Previous studies have suggested a potential association between nutrients and cerebral small vessel disease (CSVD), but this association has not been fully addressed. Object: We intended to clarify the causal associations between four categories of essential nutrients (amino acids, polyunsaturated fatty acids, minerals and vitamins) and two acute manifestations of CSVD (intracerebral hemorrhage and small vessel stroke) using two-sample Mendelian randomization (MR) analysis. Method: We obtained European-based large-scale genome-wide association studies (GWASs) related to CSVD (6,255 cases and 233,058 controls) and nutrient concentrations. Causality evaluation mainly included the results of the inverse variance-weighted (IVW) method. The simple median method, the weighted median method and the MR-Egger method were adopted for sensitivity analyses. Results: For ICH or SVS, increased levels of phenylalanine (OR = 1.188, p < 0.001) and dihomo-gamma-linolenic acid (DGLA) (OR = 1.153, p = 0.001) showed risk effects, while docosapentaenoic acid (DPA) (OR = 0.501, p < 0.001), zinc (OR = 0.919, p < 0.001), and arachidonic acid (OR = 0.966, p = 0.007) showed protective effects. For lobar hemorrhage or SVS, AA (OR = 0.978, p < 0.001), zinc (OR = 0.918, p < 0.001), and retinol (OR = 0.753, p < 0.001) showed risk effects; DPA (OR = 0.682, p = 0.022), gamma-linolenic acid (OR = 0.120, p = 0.033) and 25(OH)D (OR = 0.874, p = 0.040) showed protective effects. For nonlobar hemorrhage or SVS, DGLA (OR = 1.088, p < 0.001) and phenylalanine (OR = 1.175, p = 0.001) showed risk effects. Conclusion: Our study analyzed the effect of nutrients on CSVD risk from a genetic perspective, with implications for CSVD prevention through nutrient supplementation.

...